TENDER DOCUMENT

NIT No.- DLI / C&E / WI-665 / 511

Tender for ‘Supply’ of 3CX185 mm2, 11KV(UE) GRADE, POWER CABLE for the project of “Augmentation of Raw Material Receipt and Handling Facilities with new OHP Part- B (Package- 061) of Bhilai Steel Plant (SAIL)”.

VOLUME- 2

(technical Part)
Contents- (Volume-2)

NIT No. DLI/C&E/WI-665/511

<table>
<thead>
<tr>
<th>S.No,</th>
<th>Description</th>
<th>Total sheets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volume-2A (General Specifications)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Introduction</td>
<td>02 sheets</td>
</tr>
<tr>
<td></td>
<td>- General Specification (Project Synopsis, GTR, PG, Inspection & Testing, Painting etc.)</td>
<td>35 sheets</td>
</tr>
<tr>
<td>2</td>
<td>Volume-2B (Scope of Work & General Technical Specification.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Scope of work</td>
<td>01 sheet</td>
</tr>
<tr>
<td></td>
<td>- Technical specification</td>
<td>05 sheets</td>
</tr>
</tbody>
</table>
TENDER DOCUMENT

NIT No.- DLI / C&E / WI-665 / 511

Tender for ‘Supply’ of 3CX185 mm², 11KV(UE) GRADE, POWER CABLE for the project of “Augmentation of Raw Material Receipt and Handling Facilities with new OHP Part- B (Package- 061) of Bhilai Steel Plant (SAIL)”.

VOLUME- 2A

(General Specification)

ENGINEERING PROJECTS (INDIA) LIMITED
(A GOVT. OF INDIA ENTERPRISE)
Core-3, Scope Complex, 7, Institutional Area,
Lodhi Road, New Delhi-110003
TEL NO: 011-24361666 FAX NO. 011- 24363426
INTRODUCTION-OHP PART-B (PKG-061) BSP, -BHILAI

01.01 Bhilai Steel Plant, in its approach note for corporate plan 2011-12, indicated that the production potential of BSP would be 7.0 MTPY of crude steel, subject to implementation of strategies to overcome the present constraints and providing certain additional facilities.

Present facilities in OHP to receive, unload & store raw material in OHP is insufficient mostly due to logistical problems in placement of rakes in yard, weighment, placement of rakes in tippler & collection of empty wagons, transportation of raw material to the yard etc. This is causing a lot of wagon detention and thereby heavy demurrages are paid to the Railway authority. Additionally logistics for stockpiling in the manner desired and reclamation also posed bottlenecks.

To overcome this problem, a scheme with one additional Wagon Tippler with all related facilities including conveyor system, interconnection of existing & proposed unloading stream, two additional beds for stockpile in the existing OHP with one Stacker, one Reclaimer, yard conveyors etc. have been envisaged as Part-A.

An immediate measure to ease the unloading of material and to avoid demurrage charges for detention of wagons, an additional Wagon Tippler in-between the existing Wagon Tippler and track-hopper of OHP with all related facilities is being separately considered in PART-A of the Augmentation of Ore Handling Plant. Thus Part-A pertains to solving the present problem posed in OHP so that raw material required at present (no increase in quantity envisaged) is handled with ease causing no delays.

PART-B of the Augmentation of Raw material receipt & handling facilities with new OHP shall consist of all other facilities and pertains to the management of the additional quantity of raw material required to produce 7MTPY of Crude Steel in Bhilai Steel Plant. The major facilities envisaged are a Wagon Tippler, two new Track Hoppers with two unloading tracks and a new OHP (OHP-II) with six numbers of beds of stockpile, three Stackers and four Reclaimers and related conveyors to feed new Blast Furnace BF#8 and SP-III (both modules).
The existing conveyors R101/102 series shall now feed the new RMP plant (RMP III) for new SMS-III with provision of direct feed of bulk materials to SMS III. However, original route from existing OHP I to Sinter Plant-III will still exist for emergency.

The bidder shall study the specification along-with related documents and satisfy himself thoroughly regarding suitability of the plant and equipment and system, specified in the tender document and take full responsibility for guaranteed operation of the equipment with respect to output, reliable working as well as ease of operation, inspection and maintenance including replacement with minimum down time.

The bidder shall endeavor to use maximum indigenous equipment/facilities which may be available in India/be manufactured in India by Indian associates based on manufacturing drawings to be supplied by the contractor/his sub-suppliers. The HT Cable shall be selected as per NIT.
GENERAL SPECIFICATION

1.0 PROJECT SYNOPSIS

1.1 Site Conditions

1.1.1 Location

Bhilai Steel Plant (BSP), SAIL is located at Bhilai in Durg District of the state of Chhattisgarh in the central region of India. The site lies between 21.15° North latitude and 81.22° East latitude. The nearest convenient railhead is Durg which is about 12km west Bhilai. Bhilai /Durg stations are on the Howrah-Mumbai rail line of SEC Railway of the Indian railways.

The location of Bhilai is as follows:

From New Delhi, the national capital -- 1359 kms
From Kolkata -- 868 kms
From Chennai -- 1269 kms
From Mumbai -- 1100 kms

The distance from State Capital Raipur to Bhilai Steel Plant is 30km. It is well connected by the rail and road network. The nearest national highways are NH 6 & NH 43 crossing through Raipur.

1.1.2 Meteorological Data

In the absence of meteorological data at Bhilai/Durg, the data of the state capital Raipur, 30kms away, are considered. The meteorological details at Raipur are given below:

Ambient Temperature

- Absolute maximum : 47.7° C
- Absolute minimum : 3.9° C
- Highest of mean monthly : 45.2° C

Ambient Air

- Ambient air quality : Industrial

Relative Humidity

- Maximum : 100%
- Minimum : 7%

Climate

- Tropical Humid

Rainfall

- Harvest rainfall in 24 hours : 370.3mm
- Annual Average : 1288.8mm
Wind

Predominant wind direction : SW to NE (Oct- Feb) and West to East (Mar- Sep)
Mean wind speed : 6.8 kmph
Maximum mind speed : 45 kmph

Altitude

Average altitude of the land is 300 m above MSL. Temperature inside shop premises is generally taken as 5° C above ambient, unless otherwise specified.

1.1.3 Infrastructure Facilities Outside the Plant

Railway

Bhilai Steel Plant is connected to Indian Railways network via Bhilai/Durg Stations of SEC Railway on the Howrah-Mumbai line. The track gauge of SEC Railways as well as of the plant tracks are standard broad gauge i.e 1676 mm.

Road

The plant is well connected to the country by road. National Highways NH6 & NH43 both pass through Raipur.

Sea Port

The nearest sea port is Vishakhapattnam approximately 550 km away from the site by rail.

Air Traffic

The nearest air port connected to the national network is Mana at Raipur, 30kms away.

1.1.4 Infrastructure Facilities Inside the Plant

Railway

The track gauge for the entire plant corresponds to the Indian Railway standard broad gauge i.e 1676mm.

Road

Main road and side of the Plant shall have roadways of 7.0m and 4.0m width respectively and the temporary roads provided during the construction stage shall be designed to cater the needs of movement of heavy construction vehicles.
2.0 GENERAL TECHNICAL REQUIREMENTS (GTR)

2.1 General Rules and Regulations

All plant units with respect to their location, layout, general arrangement and design of equipment, structural design, etc. shall be safe to the personnel and conform to the relevant statutory requirements issued by Chhatisgarh Government and the Government of India but not limited to the following.

- Chhatisgarh State Factory Rules/Acts
- Indian Electricity Rules/Acts
- Electricity Regulatory Commission Act
- Indian Petroleum Regulations/Acts
- Indian Boiler Regulations/Acts
- Indian Explosives Acts
- Gas Cylinders Rules/Acts
- Carbide of Calcium Rules/Acts
- State and mobile Pressure Vessels Codes (unifired) Rules/Acts
- Fire Protection Manual issued by Tariff Advisory Committee (India)
- Pollution Control Regulations/Acts

Pollution control measures shall be provided considering the latest norms and international standards. These should satisfy the stipulations of Central Pollution Control Board and Department of Environment and the Forest, Government of India.

2.1.1 Standard

Preferred Makes of Equipment & Supplies
To restrict/minimize stock/inventory of spares, the Purchaser considering will limit the makes of equipment & supplies to those listed in the “preferred makes of equipment and supplies” unless otherwise expressly so agreed.

Unit of Measurement
All dimensions & weights shall be given in metric system.

Language
All drawings, documents etc. shall be in English language.

2.2 Safety

2.2.1 Safety Regulations
The Vendor shall comply with the relevant Safety Rules and Regulations but not limited to the following:
- Chhatisgarh State Factory Rules/Acts
- Indian Electricity Rules/Acts
- Electricity Regulatory Commission Act
- Indian Petroleum Regulations/Acts
- Indian Boiler Regulations/Acts
- Indian Explosives Acts
- Gas Cylinders Rules/Acts
- Carbide of Calcium Rules/Acts
- State and mobile Pressure Vessels Codes (Unifired) Rules/Acts
- Fire Protection Manual issued by Tariff Advisory Committee (India)
- Pollution Control Regulations/Acts

Strict attention shall be paid to all statutory regulations and safety rules for prevention of accidents.

The safety posters/regulations for prevention of accidents shall be displayed by the Vendor at appropriate places. Notices and warning signs shall be displayed for all sources of dangers.

The Vendor is not permitted to construct any temporary road crossing on the rail tracks for the sake of their convenience at work site.

When the work is carried out at night or in the obscure day light, adequate arrangements for flood lighting in the working area shall be made by the Vendor at his own cost and got approved by the Purchaser.

All handling/transport and the rigging equipment including lifting tools and tackles shall be checked at regular intervals and kept in good and safe working condition.

A register is to be maintained regarding the results of periodical tests/checks and other particulars in respect of each and every such equipment.

The Vendor must take sufficient care in moving his construction plant and equipment from one place to another, so that those do not cause any damage to the property of the Purchaser or obstruct construction activities of other Vendors.

The Vendor shall depute a full time safety engineer who will exclusively look after all the jobs pertaining to safety at site and keep close liaison with Purchaser/Consultant. He will be responsible for maintaining safe working conditions at site, promoting safety consciousness among the workmen and reporting to concerned authorities in case of accident/dangerous occurrences.

Before execution of work in hazardous area like

- Gas contamination
- Working at height
- Storage of inflammable materials
- Danger of electric shocks
- Explosion risks
- Excavation more than 2m deep, etc.

A protocol should be prepared in association with the agencies of the Purchaser / Consultants.

2.2.2 Safety while Working with Explosives
Explosives shall not be used on the work site by the Vendor without the written permission of the Purchaser and that too only in the manner and to the extent to which it has been prescribed.

Explosives shall be stored in special premises approved by Purchaser and at the cost of the Vendor who shall be liable for all damages, loss or injury to any person or property and shall be responsible for complying with all statutory obligations in these respects.

2.2.3 Safety Appliances

The Vendor shall provide the safety appliances conforming to the relevant Indian standards to all their workmen and supervisors engaged by them as well as by the sub-contractors.

The Vendor shall ensure that all the workmen and supervisors, are using the safety appliances regularly during work at site.

Any form of compensation in lieu of safety appliances shall not be permitted. Any violation in safety provisions of failure to maintain safe working conditions will lead to serious penalty on the Contractor and finally may lead to termination on the Contract.

The workmen of the Vendor deployed for construction and erection in hazardous areas shall be provided with personnel protective safety appliances of special nature suitable for hazardous working conditions.

2.2.4 Safety during Construction/Execution

The Vendor shall be responsible for the safety of his workmen and employees. The Vendor shall ensure that safety practices are followed so as to present personal injury to his workmen and also to other persons working/passing by in that area.

The Vendor shall ensure that in case of any accidents, the same are reported without delay to the Purchaser/Statutory Authorities as per Rules. In case of any injury/accident the Vendor shall bear all the expenditure for medical treatment and shall pay the compensation in case of permanent disability or death.

The Vendor shall ensure that all personnel employed do not stray into others areas. Any injury caused due to this shall be the sole responsibility of the Contractor.

The Vendor shall ensure that skilled labours required for specific works have necessary trade certificates and adequate experience of the job. This is likely to be checked by the Purchaser. The concerned operator, mechanics, electricians, fitters, riggers, etc. must be fully conversant with the hazards associated in operation/maintenance of their relevant equipment.

2.2.5 Safer Working Platforms
• Vendor shall use strong and secured planks and boards of the right sizes.
• These planks shall be painted at the edges brightly to warn the workers for any misuse (usually zebra paint)
• Vendor shall make sure that scaffolds are erected by the trained scaffolders.
• Supervisors must inspect scaffolds once every week.

2.2.6 Falling Objects and Debris

• No loose materials which can fall down should be kept on the working platforms.
• Overhead shelters should be provided to minimize damage from tailing objects.
• Strong nets to be provided to catch these objects or debris.
• Nets must envelop all sides of the building.

2.2.7 Personal Safety Equipment

• Workers must wear approved safety helmets and shoes.
• For those working in high places safety belts shall be provided.
• The safety belts must be attached to strong anchorage points.

2.2.8 Operating Construction Machine

• Vendors shall make sure that those operating the construction machinery are well trained for their jobs.
• The keys of such machinery shall be kept with the authorized persons.
• The keys shall be removed after use of the machine.

2.2.9 Safer Electrical Installations

• Vendor shall use approved types of electrical sockets and plugs.
• Proper insulators for all electrical wiring shall be provided.
• Wiring should not be allowed to lie on the floor or on the ground.

2.2.10 Safety in Designing of Equipment

All machinery and equipment must be equipped with safety devices. The safety provisions shall conform to the recognized standards, safety codes and statues.

All safety measures as required to be adopted as per statutory regulations and the safety rules of the plant shall be strictly followed by the Vendor during the execution of the Contract.

2.3 Drawing and Documents

2.3.1 Drawing
The drafting standards adopted in preparation of drawing shall be such that good clean and legible print of the drawing can be obtained.

For preparation of original drawing guidelines contained in Indian Standard specification IS: 10164-1985 (preparation of engineering drawing and diagrams) shall be followed.

<table>
<thead>
<tr>
<th>Size Code</th>
<th>Working Space (mm)</th>
<th>Cut Size (mm)</th>
<th>Uncut (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>811 X 1144</td>
<td>841 X 1189</td>
<td>880 X 1230</td>
</tr>
<tr>
<td>A1</td>
<td>564 X 796</td>
<td>594X 841</td>
<td>625 X 880</td>
</tr>
<tr>
<td>A2</td>
<td>390 X 549</td>
<td>420 X 594</td>
<td>450 X 625</td>
</tr>
<tr>
<td>A3</td>
<td>267 X 375</td>
<td>297 X 420</td>
<td>330 X 450</td>
</tr>
<tr>
<td>A4</td>
<td>180 X 252</td>
<td>210 X 297</td>
<td>240 X 330</td>
</tr>
</tbody>
</table>

However, Vendor’s standard drawings are exempted from the above limitations. It is desirable to keep the same size of all drawings for ease of filing, reference and record keeping.

All drawings shall be oriented to match the plant layout drawings and shall have a key plan identifying the plant area to which they apply.

There shall sufficient reference notes and cross-references on the drawings to permit identification of all related drawing and documents, which are required for proper understanding.

When a drawing is revised by the Vendor/ Sub-Contractor, every change made shall be identified on the drawing by placing the revision number in a small triangle so as to be easily recognizable. In addition, a record of revisions along with the co-ordinates showing the location of revisions shall be indicated at the left hand bottom corner of the drawings as per standard practice. In case of revision of drawing, for which different number is allotted, the new drawing shall clearly indicate the number of the drawing which it supersedes.

Approval of drawings from the statutory authorities such as the Indian Boiler Inspectorate, Inspectorate of Explosives, Electrical Inspector, etc. is the responsibility of the Vendor/ Sub-Contractor.

Any additional drawings not specifically mentioned by the EPI/BSP/MECON but are the required for the approval of drawings, shall be submitted by the Vendor/ Sub-Contractor.

The Title block of the drawing shall be given to successful bidder.

2.3.2 Approval of Drawings

Approval of Vendor’s drawings will generally be accorded within four (4) weeks of receipt.
Approval of Vendor’s drawings means that these will be checked for conformity with applicable specifications and general conformity with the engineering requirement for the areas covered in the scope of work. It is understood that approval by the Purchaser’s Consultant does not include checking for drafting and other errors but only reviews of basic concepts and general principles involved.

The Vendor shall be responsible for any discrepancy, errors and omissions in the drawings have been approved by the Purchaser/Consultants or not. The Vendor shall bear all extra cost due to alterations necessitated by reasons of any discrepancies, errors or omissions in the drawings and particulars supplied by the Vendor.

Drawing furnished by the Vendor shall be certified as correct for use and shall bear the signatures of responsible persons of the Vendor.

Approval of Vendor’s drawing shall not relieve the Vendor of his responsibility to comply with the intent of the contract; manufacture/fabrication or procurement prior to approval of drawings shall be at the Vendor’s risk.

The Vendor shall submit drawing to EPI/BSP/MECON for approval by the Purchaser /Consultant as per clause 3.4 to 3.6 of GTR.

If the drawing is “Approved” then one print shall be returned back to the Vendor duly stamped “Approved” by Consultant.

If the drawing is “Not approved” or “Approved as Noted”, then one stamped print with appropriate comments shall be returned back to the Vendor for incorporation of comments and re-submission of revised drawings for approval sets with in 7 days as per clause 3.4 to 3.6 of GTR.

After approval of drawings the Vendor shall submit 12 sets of approved drawings to the EPI. The Vendor shall incorporate the following note on the drawing before “Approved by MECON vide letter no............dtd…”

The drawing shall become a contract drawing after approval and there after the Vendor shall not deviate from them in any way whatsoever except with the written permission of the EPI/BSP/MECON.

All reference and information category drawings shall be submitted in 12 sets to EPI. These drawings shall be submitted to Purchaser before forwarding the same to erection Vendor at site for constructive/erection activities.

The information category drawings shall not be approved by the Consultant. However, information category drawings shall be stamped "For Information Only” and one set shall be returned back to the Vendor.

In case any discrepancy is observed on these drawing, same shall be informed to the Vendor by marking the comments on the drawings. The Vendor shall resubmit these drawings after incorporating the comments in 12 sets to the EPI.
After receipt of stamped “For Information Only” the Vendor shall submit 10 sets of drawings to the EPI. The Vendor shall incorporate the following note on the tracing before taking additional prints for submission to the EPI.

Stamped “For Information Only” by MECON vide their letter no........ dtd.......

2.3.3 Submission of Drawings, CD Reproducible and Documents

The Vendor shall submit the following drawing/documents to EPI and these will be distributed to BSP/ MECON as detailed below.

<table>
<thead>
<tr>
<th>Drawings</th>
<th>MECON</th>
<th>BSP</th>
<th>EPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Approval category drawings for approval of consultants.</td>
<td>6 sets</td>
<td>2 sets</td>
<td>2 sets</td>
</tr>
<tr>
<td>2. Fabrication drawing for approval of consultants.</td>
<td>6 sets</td>
<td>--</td>
<td>4 sets</td>
</tr>
<tr>
<td>3. Drawing after approval along with list of Drawings (for distribution)</td>
<td>8 sets</td>
<td>2 sets</td>
<td>4 sets</td>
</tr>
<tr>
<td>4. Information category drawings</td>
<td>8 sets</td>
<td>2 sets</td>
<td>2 sets</td>
</tr>
<tr>
<td>5. Information category drawings after stamping ”For Information Only” by consultants.</td>
<td>8 sets</td>
<td>2 sets</td>
<td>2 sets</td>
</tr>
<tr>
<td>6. Erection drawings</td>
<td>8 sets</td>
<td>2 sets</td>
<td>4 sets</td>
</tr>
<tr>
<td>7. As built drawings</td>
<td>--</td>
<td>2 sets</td>
<td>2 sets</td>
</tr>
<tr>
<td>8. Spare parts drawings</td>
<td>--</td>
<td>2 sets</td>
<td>2 sets</td>
</tr>
<tr>
<td>9. Wearing parts drawings</td>
<td>--</td>
<td>2 sets</td>
<td>2 sets</td>
</tr>
</tbody>
</table>

Compact Disc and Reproducibles

<table>
<thead>
<tr>
<th>Compact Disc and Reproducibles</th>
<th>MECON</th>
<th>BSP</th>
<th>EPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. As built drawing of approval category</td>
<td>--</td>
<td>1 set</td>
<td>1 set</td>
</tr>
<tr>
<td>2. As built drawing of information category</td>
<td>--</td>
<td>1 set</td>
<td>1 set</td>
</tr>
<tr>
<td>3. Spare parts drawings</td>
<td>--</td>
<td>1 set</td>
<td>1 set</td>
</tr>
<tr>
<td>4. Wearing parts drawings</td>
<td>--</td>
<td>1 set</td>
<td>1 set</td>
</tr>
<tr>
<td>5. All manuals</td>
<td>--</td>
<td>1 set</td>
<td>1 set</td>
</tr>
</tbody>
</table>

Documents
1. Erection manual 1 set 6 sets 3 sets
2. Operating and maintenance manuals 1 set 6 set 2 sets
3. Storage and reconservation manuals 1 set 6 set 2 sets
4. Safety manuals 1 set 6 set 3 sets
5. List of consumables 1 set 6 set 3 sets
6. List of lubricants and hydraulic 1 set 6 set 3 sets
7. List of special tools and tackles 1 set 6 set 3 sets
8. Test certificates and inspection certificates 1 set 6 set 2 sets

2.3.4 Progress Report

The Vendor shall submit a detailed PERT Network showing completion time which would indicate starting and completion dates of all activities of engineering, purchasing, procurement of materials, manufacturing, inspection, dispatch, erection, testing, and commissioning, etc. under his scope of work.

The Vendor shall submit the progress report in such details as may be required by the Purchaser so as to enable them to monitor the progress of work.

The Vendor shall submit the progress report every month in the proforma mutually discussed and agreed.

2.3.5 Coding Scheme

All drawings/documents/equipment/spare parts/shipments shall have a coded number which shall be finalized with the successful tenderer.

2.3.6 Title Block of Drawing

Soft copy and hard copy of title block shall be given to successful bidder.

3.0 PERFORMANCE GUARANTEE

3.1 General

On completion of erection of the plant units along-with utilities and auxiliaries by respective package bidders as per approved drawings/documents as well as detailed drawings, the successful bidder shall undertake preliminary Acceptance Test (PAT) i.e. cold test, to prove that the unit has been supplied as per agreement and after erection the unit is fit to be started up and commissioned. The PAT shall be followed by
commissioning (hot trials) to demonstrate that the unit is fit for commercial production.

3.1.1 Preliminary Acceptance Test (PAT)

Cold tests shall be performed on the individual sub-assemblies of the unit and shall be designed to conduct the systematic check of the components and of the functional operation thereof.

Cold tests shall comprise idle, no-load tests. Cold tests shall be conducted by the successful bidder under his sole responsibility. The employer will provide skilled operating personnel during the cold test. A detailed programme of cold tests shall be drawn up by the successful bidder and shall be subject to the approval of the employer / consultant. Such programme may be revised and adjusted as may be required by the employer during the test run.

Results of cold tests shall be recorded jointly by the successful bidder and the employer.

On successful completion of preliminary acceptance tests, and liquidation of the defects list, preliminary acceptance certificates shall be issued by the employer.

3.1.2 Successful Commissioning (Hot Trials)

After issue of preliminary acceptance certificates, the successful bidder shall start-up and commission the unit in an integrated manner under his sole responsibility.

During the start-up and commissioning, the successful bidder shall perform the required adaptation, adjustment and hot run the Plant & Equipment to demonstrate its production capacity.

The employer shall, for the purpose of start-up and commissioning, provide operating personnel as may be available with him for normal operation, who shall work under the instructions and guidance of the successful bidder.

Start-up and commissioning of the unit shall be taken up only when material handling system, electrical power system, inter-plant fluid system and auxiliaries serving the unit as well as the preceding / succeeding plant units are under normal operation and / or feed material is available. The successful bidder shall rectify the defects observed during commissioning.

The quantities of starting material and facilities necessary for conducting the commissioning shall be mutually determined by the successful bidder and employer.

Commissioning of the unit shall be deemed to be successfully completed, after ten (10) days of rated material is successfully transported, for the
particular circuit.

Results of start-up tests and commissioning shall be recorded jointly by the successful bidder and the employer.

On successful completion of commissioning of the unit and its commencement of commercial production as per above mentioned clause, commissioning certificate shall be issued by the employer within 15 days.

The unit shall be taken over by the employer when:

a) Commissioning certificate as per clause 08.01.02.008 has been issued by the employer.

b) The successful bidder has submitted all final documents in compliance with the provisions of this specification.

c) The successful bidder has supplied all consumables, change parts, special tools and tackles and commissioning spares.

d) The successful bidder has met, to the satisfaction of the employer, all the observation, if any, contained in the Preliminary Acceptance certificate.

3.1.3 Performance Guarantee Tests (PG)

After successful commissioning of the plant & equipment, the bidder shall offer the plant for conducting performance guarantee tests as mutually agreed upon between the employer and bidder.

The bidder shall supervise and carry out the operation under their instruction and guidance during performance guarantee tests and shall take full responsibility of the operation. The employer will make available necessary operating and maintenance personnel as per the agreed Manning schedule as well as the raw materials, utilities and services etc, as specified.

The bidder shall submit the scope, general preconditions, test procedures and test evaluation methods which shall be finalised during tender discussion.

The performance tests for all plant equipment shall be carried out to satisfy all operating parameters as per the relevant clauses of the Technical specification for the equipment under consideration.

Performance Guarantee Test
The performance guarantee test shall be performed for each sub section continuously for 10 days. Continuity of operation however, be limited by availability of raw materials for unloading and stacking and availability of storing capacity on delivering end. Wherever equipment in the sub section is of stand by nature, each such equipment shall operate for at least 10 hours on load in the period.

The performance guarantee test shall also be performed for the complete system for 5 days on round the clock basis.

In case test is disrupted due to reasons attributable to employer, the same shall be repeated two more times attending to the reasons of the employer. If the PG test is disturbed even after this, the PG test shall be on the basis of uninterrupted operation of system for 100 hours of total system, excluding the stoppages due to fault of the bidders. However, there should not be any failure of the equipment supplied by Bidder between starts and finish of this time counting. If the operation stops due to failure of any item supplied by bidder, the operating hours prior to such failure will not be counted.

In case some equipment can not be tested within the period of testing because of failure of equipment or facility provided by others, the same will be accepted on the basis of load test result for the limited period or no – load test result where load test could not be performed at all.

The bidder shall prepare and submit a draft performance test procedure for each equipment and system within 12 months of order. The final performance test procedure will be prepared jointly by the employer / consulting engineers and the bidder based on the draft performance test prepared by the bidder and various requirement indicated in the contract specification and the order.

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Description</th>
<th>Acceptable</th>
<th>Acceptable with penalty</th>
<th>Liquidated Damages</th>
<th>Rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Wagon Tippler</td>
<td>20 tippling per hour</td>
<td>-</td>
<td>Not applicable</td>
<td>Less than 20 wagons per hour</td>
</tr>
<tr>
<td>2.0</td>
<td>Yard Machines</td>
<td>As per rated capacity Stack – 1500tph Reclaimer-1500tph</td>
<td>-</td>
<td>Not applicable</td>
<td>Less than rated capacity</td>
</tr>
<tr>
<td>3.0</td>
<td>Conveying capacity</td>
<td>As per rated capacity</td>
<td></td>
<td>Not applicable</td>
<td>Less than rated capacity</td>
</tr>
<tr>
<td>4.0</td>
<td>Environment Norms</td>
<td>As specified in TS</td>
<td>-</td>
<td>Not applicable</td>
<td>Not achieving norms</td>
</tr>
</tbody>
</table>
4.0 GENERAL SPECIFICATION ON QUALITY SYSTEM, INSPECTION & TEST OF PLANT & EQUIPMENT AT MANUFACTURER’S PREMISES

4.1 General

Inspection & testing of plant & equipment shall be carried out by BSP/MECON/EPI at the works of successful tenderer during manufacturing and/or on final product to ensure conformity of the same with the acceptable criteria of technical specifications, approved drawings, manufacturing drawings applicable national / international standards.

4.2 Quality System Requirements

The successful tenderer must recognise the importance of quality and follow defined quality programme in all stages of manufacturing and quality control activities of the product. Vendor / Contractor must define and implement the tasks and control that will provide needed assurance, in case manufacturing of product is sub-contracted either partly or fully and/or for the procured from vendors which are duly approved by the project authority.

BSP/MECON/EPI reserve the right to verify the quality programme of tenderer & its vendors/sub- vendors to assure the effectiveness of the programme to meet the intended and specified quality of the product.

4.3 Quality Assurance Plan (QAP)

4.3.1 The successful tenderer shall furnish Quality Assurance Plan (QAP) for respective equipment after completion of detailed engineering and finalisation of billing schedule / equipment identification number for Consultant’s approval at least one month prior to start of manufacturing.

4.3.2 QAP shall be prepared & furnished by Vendor / Contractor for structural & mechanical equipment, electrical equipment and refractory materials etc., QAPs must be submitted in four (4) sets duly signed and stamped by tenderer for BSP/MECON/EPI approval.

4.3.3 The successful tenderer shall indicate procurement source and furnish to BSP/MECON/EPI, during the submission of QAP, copies of P.O., Sub-P.O., T.S., approved GA drawings/ data sheets & detailed manufacturing drawings, as backup reference materials for scrutiny & final approved by BSP/MECON/EPI. The submission & subsequent approval of QAPs shall be ensured to be restricted to one round only.

4.3.4 Inspection and test requirements shall be decided with due consideration of factors like safety, duty cycle, operating conditions, equipment life, environmental conditions, place of installation and statutory regulations, as applicable, for a particular equipment. Any, additional type or special tests or routine tests if found necessary to establish the intended quality after detailed engineering then the same shall have to be incorporated in the QAP without any commercial implication.
4.3.5 Detailed QAP shall be prepared by the successful tenderer in consultation with their Sub-contractors / Manufacturers to avoid any complicacy later.

4.4 **Calibration of Measuring Equipment**

4.1 All the measuring equipment used for inspection & testing shall be calibrated and appropriate accuracy class of measuring equipment shall be used. Calibration standards used for calibration of measuring equipment shall be traceable to national standards of National Physical Laboratory (NPL), New Delhi with unbroken chains of comparison.

4.2 Valid calibration certificate for all measuring equipment used during inspection and testing at manufacturer’s works, with traceability to national standards of NPL/ NABL accredited laboratories shall be furnished prior to undertaking inspection by BSP/MECON/EPI.

Calibration certificate shall also indicate reference no. of calibration standards calibrated by NPL/NABL accredited laboratories and copies of such calibration certificates of calibration standards shall be included in the compiled dossiers of inspection/test results.

4.5 **Test Certificates and Documents**

4.5.1 For each of the items being manufactured as per approved QAP, following test certificates and documents, as applicable for each of the equipment, in requisite copies including original, duly endorsed by the Manufacturer/successful tenderer with appropriate linkage to project, purchase order and acceptance criteria etc shall be submitted to Consultant/Purchaser.

ii) WPS, PQR & WPQ documents as per applicable code.

iii) Details of stage wise inspection & rectification records for fabricated items, castings, forgings and machined articles.

iv) Control dimension chart with records of alignment, squareness etc.

v) Manufacturer’s material and performance/relevant test certificates for all bought-out items.

vi) Details of heart-treatment and stress relieving charts as per specification.

vii) Non-Destructive Test reports as per respective code.

viii) Static/dynamic balancing certificate for rotating components/machines.

ix) Hardness test certificate.
x) Pressure/Leakage Test Certificates.

xi) Performance Test Certificates for all characteristics.

xii) Routine / type / calibration / acceptance / special test (Type Tests etc) certificates for electrical items.

xiii) Surface preparation and painting certificates.

xiv) Certificates from competent authority for the items coming under statutory regulations.

4.5.2 Where physical and chemical test certificates of material are not available, the successful tenderer/Sub-contractor shall arrange to have specimens and test samples of the materials, tested in his own laboratory at his cost and submit the copies of test results in requisite numbers to BSP/MECON/EPI for review. Number of test samples against each heat/cast/lot or batch of materials, as applicable shall be as per relevant Indian or International Standards.

4.5.3 Where facilities for testing do not exist in the successful tenderer/Sub-contractor’s laboratories or in case of any dispute, samples and test pieces shall be drawn by the successful tenderer/Sub-contractor in presence of BSP/MECON/EPI and sealed sample shall be sent to any Govt. approved /NABL accredited laboratory for necessary tests at former’s own cost.

4.5.4 The BSP/MECON/EPI shall have the right to be present and witness all tests being carried out by the successful tenderer/Sub-contractor at their own laboratory or approved laboratories. Also, the Inspection Agency shall reserve the right to call for confirmatory test on samples, at his discretion.

4.6 Internal Inspection by Successful Tenderer/Manufacturer

4.6.1 Inspection and tests shall be carried out by Contractor/ Manufacturer in accordance with approved drawing, T.S., P.O., and approved QAP. They shall maintain records of each inspection and test carried out and signed documents shall be submitted to Purchaser/ Consultant for verification.

4.6.2 The successful tenderer shall carry out their internal inspection & obtain clearance from statutory bodies e.g. IBR, CCE, TAC, Weights & Measures, safety, IE rules etc. prior to offering any equipment for BSP/MECON/EPI’s inspection in accordance with approved QAP.

4.6.3 The successful tenderer/ Manufacturers shall identify all the inspected equipment/component/raw materials & shall maintain the record of status of inspection viz. inspected & found acceptable, require rectification/rework, rejected etc.

4.6.4 The successful tenderer shall establish and maintain procedures to ensure that the product that does not confirm to specified requirements is prevented from inadvertent use or installation. The description of non-conformity that has been accepted subsequently by BSP/MECON/EPI by concession and/ or of repairs, shall be recorded.
Repaired and reworked product shall be offered for re-inspection to BSP/MECON/EPI along with records of corrective action taken.

4.7 **manufacturing and inspection schedule**

All Vendors / contractors shall submit the schedule for manufacturing and inspection indication equipment / components, sub-assembly/assembly. Date of approval of drawings / data sheets. Address of manufacturer with contact person and scheduled date of inspection. Such reports shall be submitted to respective Consultant Inspecting Offices with a copy to Inspection Co-ordinating Office once in a month. These monthly reports shall state the planning for next three months. Submission of first reports must commence one month prior to commencement of manufacturing activities of the product.

4.8 **Method of Undertaking Inspection & Testing by Consultant / Purchaser**

4.8.1 Inspection call shall be given only on readiness of the equipment/assembly/sub-assembly & after approval of all relevant drawings and QAP. In case equipment/assembly/sub-assembly offered for inspection are found not ready, all the cost of visit of Consultant’s engineer shall have to be borne by the successful tenderer.

If the equipment/assembly/sub-assembly after inspection found not acceptable, require rework and involve Consultant’s re-inspection, all the cost of such re-inspections shall also have to be borne by the successful tenderer.

4.8.2 Inspection call shall be floated to BSP/MECON/EPI, in the approved duly filled in, with ten days clear margin, enclosing all documents like test Certificates, Internal Inspection Reports, P.O., Sub-P.O., T.S., Approved QAP, approved GA drawings/data sheets and manufacturing drawings. Inspection calls without above documents shall be treated as invalid and shall be ignored. The hard copy of such documents must also accompany a CD (comprising computer readable files) containing the identical documents.

4.8.3 The successful tenderer shall offer substantial quantities for economical inspection consistent with the size of order.

4.8.4 On receipt of the Inspection call, pertaining to particular package / equipment/item, QA & Inspection group of MECON, Ranchi (Overall co-ordinating office for Inspection activities) shall organize inspection visit or will issue Inspection assignment to other Consultant’s office (based on nearness to the vendor’s manufacturing works / relevant job expertise). For further inspection pertaining to the same package / equipment / item, successful tenderer may forward the subsequent inspection calls to the respective Consultant’s offices (as identified per initial assignment), with a copy to QA & Inspection Section, Ranchi.

4.9 **Obligations of Successful Tenderer**
4.9.1 The successful tenderer shall provide all facilities and ensure full and free access of the Inspection Engineer of BSP/MECON/EPI to their own or their Sub-Contractor’s premises at any time, during contract period, to facilitate him to carry out inspection & testing of the product during or after manufacture of the same.

4.9.2 The successful tenderer shall delegate a Representative / Co-ordinator to deal with BSP/MECON/EPI on all inspection matters. Representative of successful tenderer shall be present during all inspection at Sub-Contractor’s works.

4.9.3 The successful tenderer shall comply with instructions of BSP/MECON/EPI fully and with promptitude.

4.9.4 The successful tenderer/ Sub-Contractor shall provide all instruments, tools, necessary testing & other inspection facilities to BSP/MECON/EPI free of cost for carrying out inspection.

4.9.5 The cost of testing welds by ultrasonic, radiographic and dye penetration tests etc. in the fabrication workshop shall be borne by the successful tenderer. These tests need to be witnessed by ASNT/ISNT Level-II qualified NDT personal.

4.9.6 The successful tenderer shall ensure that the equipment/ assembly/ component of the plant and equipment required to be inspected, are not dismantled or dispatched before inspection.

4.9.7 The successful tenderer shall not offer equipment for inspection in painted condition unless otherwise agreed in writing by BSP/MECON/EPI.

4.9.8 The successful tenderer shall not offer equipment and materials once rejected by the BSP/MECON/EPI, are not re-used in the manufacture of the plant and equipment. Where parts rejected during inspection have been rectified as per agreed procedures laid down in advance, such parts shall be segregated for separate inspection and approval, before being used in the work.

4.10 Stamping and Issue of Inspection Documents

4.10.1 Inspection Memo:- For rejected items/ items, which do not conform to Technical Specification in one or more quality characteristics requiring rectification / rework, Inspection Memo shall be issued indicating therein the details of observation & remarks. All the non-conformities with respect to specification of the product shall be indicated in the Inspection Memo for further quality control by successful tenderer.

4.10.2 Inspection Certificate:- On satisfactory completion of final inspection & testing. All accepted plant & equipment shall be stamped suitably and Inspection Certificate shall be issued by the Consultant for the accepted items.

4.11 General Clause
4.11.1 Inspection & tests carried out by Consultant/Purchaser shall not absolve the responsibility of the successful tenderer/Manufacturer to provide acceptable product as per the terms of contract nor shall it preclude subsequent rejection.

4.11.2 Purchaser/Consultant reserve the right to inspect any product at any stage of manufacturing beyond pre-identified stages & hold points of approved QAP.

4.12 Format

Performa for inspection of all equipment shall be as per EPI / EPI’s clients requirement.

5.0 PAINTING

5.1 General

5.1.1 This specification covers the materials, tools, facilities and quality requirement for surface preparation and painting of steel structures, equipment, piping, ducts, chutes, wood work etc.

5.1.2 This is only a general guideline of the painting scheme to be followed by the Tenderer, However, in case a specific painting procedure is stipulated in any tendering specification, then this general guideline shall be superseded. Any special case which may arise from time to time shall be dealt with individually on the merit of each case.

5.1.3 The term “painting” referred herein covers rust preventive, fungus/insects preventive and decorative coating along with surface protection of the following area but not limited to the areas indicated below.

 i) Structural steel works
 ii) Mechanical equipment
 iii) Electrical equipment
 iv) Instrumentation and control equipment.
 v) Pipe work
 vi) Oxygen plant, etc.

5.1.4 Surfaces made of asbestos, aluminum, brass, bronze, galvanized steel, stainless steel, cast iron and other corrosion resistant alloys and rubber/synthetic polymer/fiber reinforcement plastic and buried pipe work are not required to be painted unless specified except for aesthetic purposes or for identification bands, wherever relevant.

5.1.5 The complete paint system for any item includes the following basic activities:

 i) Proper surface preparation
 ii) Application of primer coats
 iii) Application of intermediate coats
 iv) Application of finished coats
All the above coats shall be of quality paint products and of approved make. The scope of work shall also include supply of all paint materials as per specification described herein.

5.1.6 If the contractor desires to adopt alternative paint system for any specific item for an improvement or equivalent to the system specified here-in or as per recommendations of paint manufacturer, may do so subject to purchaser’s approval in advance.

5.2 Surface Preparation

5.2.1 Surface preparation required for paint application, shall be such as to clean the surface thoroughly of any material which will be conducive to premature failure of the paint substrates.

5.2.2 All surfaces shall be cleaned of loose substances, and foreign materials, such as dirt, rust, scale, oil, grease, welding flux, etc. in order that the prime coat is rigidly anchored to the virgin metal surface. The surface preparation shall confirm to pictorial representation of surface quality grade of Swedish Standards Institution SIS – 055900 or equivalent standards such as SSPC – VIS – 1.67 or DIN 55928 (Part 4) or BS 4232 or IS 1477 – 1971 (Part I).

5.2.3 The acceptable surface preparation quality /grade are described under each paint system. The procedures include solvent cleaning, hand tool cleaning, power tool cleaning, blast cleaning, wood surface cleaning, flame cleaning and pickling. The will ensure surface quality as required by the specific primer paint. For ready reference surface preparation quality grade to be adopted in respect of SIS 055900 and DIN 55928 (Part – 4) is given in Annexure -01.

5.2.3.1 Solvent Cleaning

The surface shall be cleaned by wiping, immersion, spraying or vapour contacting of a suitable solvent or washing with an emulsion or alkaline solution to remove oil, grease, dirt, old paint, etc. Solvent cleaning shall not remove rust, scales, mill scales or weld flux. Therefore, before application of paint, solvent cleaning shall be followed by other cleaning procedures as stated in subsequent clauses.

5.2.3.2 Hand Tool Cleaning

The surface shall be cleaned manually by vigorous wire brushing as per grade St -2 quality of Swedish Standard Institution SIS 055900 and DIN 555928. This method effectively removes loosely adherent materials, but would not affect residues of rust or mill scales that are intact are firmly adherent. Finally the surface is to be cleaned with a vacuum cleaner or with clean compressed air or with clean brush. After preparation the surface shall have a faint metallic shine. The appearance shall correspond to the prints designated St-2.

5.2.3.3 Power Tool Cleaning

The surface shall be cleaned by electric or pneumatic tools, such as brushes, sanding machines, disc abrasive grinder, rotary disc scaler etc, to St -3
quality. The tools shall be used carefully to prevent excessive roughening of surface and formation of ridges and burrs. This method will remove loosely adherent materials but would not affect residues of rust or mill scales that are firmly adherent and intact.

5.2.3.4 **Blast Cleaning**

The surface shall be cleaned by impingement of abrasive materials, such as graded sand at high velocity created by clean and dry compressed air blast as per the grade according to Swedish Standard Institution SIS 055900. This method will remove loosely adherent materials as well as adherent scales and mill scales. Prior to application of blast, heavy deposit of oil and grease are removed by solvent cleaning. Excessive surface scales are removed by hand tools or power tool cleaning. The extent of removal of adherent scales is varied, depending on the application and are defined by the surface quality grades Sa 1, Sa 2, Sa 2.5 and Sa 3 in the order of increasing cleanliness. The blast cleaning is not recommended for sheet metal work.

5.2.3.5 **Flame Cleaning**

The surface is cleaned by rapid heating by means of oxyacetylene flame to loosen the adherent scales, followed immediately by wire brushing. This method will remove loosely adherent materials as well as most of the adherent scales and mill scales. In order to minimize or prevent distortion flame cutting shall not be used on members having thickness of 6 mm and lower.

5.2.3.6 **Pickling**

In this method the surface is cleaned of mill scales, rust or rust scales by chemical reaction or electrolysis or both.

5.3 **Paint Application**

5.3.1 **Paints**

5.3.1.1 Paint shall be applied in accordance with paint manufacturer’s recommendations. The work shall generally follow IS 1477 – 1971 (Part II) for jobs carried out in India and SSPC-PA-1 or DIN 55928 of equivalent for jobs carried out outside India.

5.3.1.2 General compatibility between primer and finishing paints shall be established by the paint manufacturer supplying the paints.

5.3.1.3 In the event of conflict between this general procedure on painting and the paint manufacturer’s specification, the same shall be immediately brought to the notice of the Purchaser. Generally in cases of such conflicts, Manufacturer’s specifications / recommendations shall prevail.
5.3.1.4 Before buying the paint in bulk, it is recommended to obtain sample of paint and establish "Control Area of Painting". On Control Area, surface preparation and painting shall be carried out.

5.3.1.5 If required, samples of paint shall be tested in laboratories to establish quality of paint with respect to:
 (i) Viscosity
 (ii) Adhesion/Bond of paint in steel surfaces.
 (iii) Adhesion/Simulated salt spray test.
 (iv) Chemical analysis (percentage of solids by weight).
 (v) Normal wear resistance as encountered during handling & erection.
 (vi) Resistance against exposure to acid fumes, etc.

5.3.1.6 Whole quantity of paint for a particular system of paint shall be obtained from the same manufacturer.

5.3.1.7 The main Contractor shall be responsible for supply of paints and this responsibility shall not be passed on to the sub-contractor.

5.3.1.8 The painting material as delivered to the Contractor, must be in the manufacturer’s original container bearing thereon manufacturer’s name brand and description. Paint/Painting material in containers without labels or with illegible labels shall be rejected, removed from the area and shall not be used.

5.3.1.9 Thinners wherever used shall be those recommended by the paint manufacturers and shall be obtained in containers with manufacturer’s name and brand name of thinner legibly printed, failing which the thinner is liable to be rejected and shall not be used.

5.3.1.10 All paint containers shall be clearly labeled to show the paint identification, date of manufacture, batch number, special instruction, shelf life etc. The container shall be opened only at the time of use.

5.3.1.11 All paints shall be stored in accordance with the requirements of laid down procedure by the paint manufacturer.

5.3.1.12 All ingredients in a paint container shall be thoroughly mixed to break-up lumps and disperse pigments before use and during application to maintain homogeneity.

5.3.1.13 The proposed make, quality and shade of the paint shall have the approval of the client.

5.3.1.14 The colour code of the finishing paint to be followed shall be intimated to the successful Tenderer after finalisation of order. The undercoat shall have different tint to distinguish the same from the finishing coat.

5.3.1.15 The Contractor shall furnish paint manufacturer’s test report or technical data sheet pertaining to the paint selected. The data sheet shall indicate among other things the relevant standards, if any, composition in weight percent of pigments, vehicles, additives, drying time, viscosity, spreading rate, flash
point, method of application, quality of surface preparation required, corrosion resistance properties and colour shades available.

5.3.1.16 For details of paint materials refer Annexure -02.

5.3.2 **General**

5.3.2.1 Each coat of paint shall be continuous, free of pores and of even film thickness without thin spots.

5.3.2.2 Each coat of paint shall be sufficiently dry before application of next coat.

5.3.2.3 Paint shall be applied at manufacturer’s recommended rates. The number of coats shall be such that the minimum dry film thickness specified is achieved. The dry film thickness of painted surfaces shall be checked with ELCOMETER of measuring gauges to ensure application of specified DFT.

5.3.2.4 Zinc rich primer paints which have been exposed several months before finishing coat is applied shall be washed down thoroughly to remove soluble zinc salt deposits.

5.3.2.5 The machine finished surfaces shall be coated with white lead and tallow before shipment or before being put out into the open air.

5.3.2.6 Areas which become inaccessible after assemble shall be painted before assembly (after obtaining painting clearance from the inspecting authority) after requisite surface cleaning as specified.

5.3.2.7 Paint shall not be applied when the ambient temperature is 5 deg C and below or 45 deg C and above. Also paint shall not be applied in rain, wind, fog or at relative humidity of 80% and above unless the manufacturer’s recommendations permit. Applications of paint shall be only be spraying or brushing as per IS 486 – 1983 and IS 487 -1985.

5.3.2.8 Primer paint shall be applied not later than 2 -3 hours after preparation of surface, unless specified otherwise.

5.3.2.9 Edges, corners, crevices, depressions, joints and welds shall receive special attention to ensure that they receive painting coats of the required thickness.

5.3.2.10 Surfaces which cannot be painted but require protection shall be given a coat of rust inhibitive grease according to IS 958 – 1975 or solvent deposited compound according to IS 1153 – 1975 or IS 1674 – 1960.

5.3.2.11 Surfaces in contact during shop assembly shall not be painted. Surfaces which will be inaccessible after assembly shall receive minimum two coats of specified primer.

5.3.2.12 Surfaces to be in contact with wood, brick or other masonry shall be given one shop-coat of the specified primer.

5.3.3 **Site/Field Painting**
5.3.3.1 Wherever shop primer painting is scratched, abraded or damaged, the surface shall be thoroughly cleaned using emery paper and power driven wire brush wherever warranted, and touched up with corresponding primer. Touching up paint shall be matched and blended to eliminate conspicuous marks.

5.3.3.2 If more than 50% of the painted surface of an item requires repair, the entire item shall be mechanically cleaned and new primer coats shall be applied followed by intermediate and finishing coats as per painting specification.

5.3.3.3 All field welded areas on shop painted items shall be mechanically cleaned (including the weld area proper, adjacent areas contaminated by weld spatter or fumes and areas where existing primer paint is burnt). Subsequently, new primer and finishing coats of paint shall be applied as per painting specification.

5.3.3.4 The first coat of finish paint at site shall be applied preferable within three months of the shop paint.

5.3.4 **Structural**

5.3.4.1 All fabricated steel structure, fabricated steel pipes, etc. shall have a minimum of two coats of primer paint before dispatch to site.

5.3.4.2 Parts of steel structures embedded in concrete shall be given a protective coat of Portland cement slurry immediately after fabrication and after surfaces of this part is thoroughly cleaned from grease, rust mill scales, etc. No paint shall be applied on this part.

5.3.4.3 All structures shall receive appropriate number of primer and finishing coats in order to achieve overall DFT as per design drawings/ specification.

5.3.5 **Hot Surfaces**

5.3.5.1 Total DFT for heat resistant paints should no exceed 100 – 120 microns, otherwise flaking occurs (as per paint manufacturer’s recommendations).

5.3.5.2 Heat resistant paints should be applied by brush.

5.3.5.3 Primer coat should not be applied on the surfaces having temperature condition more that 120 deg C.

5.4 **Painting Schemes**

For a complete painting scheme of any item being printed, all types of paints are to be procured from the same manufacturer as approved by the purchaser.

5.4.1 **Legend**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Surface preparation quality as per SIS standard</td>
</tr>
<tr>
<td>2P1</td>
<td>Two (2) coats of Primer paint type P1</td>
</tr>
<tr>
<td>1I1</td>
<td>One (1) coats of Intermediate paint type I1</td>
</tr>
<tr>
<td>2F1</td>
<td>Two (2) coats of Finish paint type F1</td>
</tr>
</tbody>
</table>
DFT - Dry Film Thickness in microns developed
CRT - Clean and Retouch

Type of paint products like P1 to P9, I1 to 14 and F1 to F10 have been specified under Annexure-02.

5.4.2 The painting scheme to be followed for various structure/equipment exposed to different condition is briefly given in Annexure-03 for guidance to the tenderer.

5.4.3 The colour code for different applications are indicated in Annexure-04. Wherever colour codes are not specified, the same is to be mutually agreed between the Purchaser and Contractor.

5.5 Guarantee

5.5.1 The Contractor shall guarantee that the physical and chemical properties of the paint materials conform with the specification of paint products.

5.5.2 The Contractor shall submit internal test reports from paint manufacturers regarding the quality of paint whenever asked by the BSP/MECON/EPI.

5.5.3 Guarantee period shall commence from the date of completion of finishing coat of paint. The guarantee period will be indicated depending on the type of surface preparation and system of painting. To fulfill this obligations the Contractor may obtain from the painting manufacturer, guarantee for the performance of paint/painted surfaces.
Annexure- 01

Surface Preparation Grade

<table>
<thead>
<tr>
<th>SI No.</th>
<th>Surface Preparation</th>
<th>Swedish Std SIS 055900</th>
<th>DIN Std Din 55928 (Part 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blast cleaning to white metal: Removal of all visible rusts, mill-scales, paint and foreign matters.</td>
<td>Sa 3</td>
<td>Sa 3</td>
</tr>
<tr>
<td>2</td>
<td>Blast cleaning to near white metal: 95% of any section of surface area is free from all rusts, mill-scales and visible residues.</td>
<td>Sa 2.5</td>
<td>Sa 2.5</td>
</tr>
<tr>
<td>3</td>
<td>Blast cleaning to commercial quality: At least 2/3 of any section of the surface area is free from all rusts, mill-scales and visible residues.</td>
<td>Sa 2</td>
<td>Sa 2</td>
</tr>
<tr>
<td>4</td>
<td>Brush-off blast cleaning: Removal of all loose mill-scales, rust and foreign matters etc.</td>
<td>Sa 1</td>
<td>Sa 1</td>
</tr>
<tr>
<td>5</td>
<td>Power tool cleaning: Very thorough scrapping and wire brushing to remove loose mill-scale, rust and foreign matters to have pronounced metallic shine.</td>
<td>St 3</td>
<td>St 3</td>
</tr>
<tr>
<td>6</td>
<td>Hand tool cleaning: Removal by hand brushing of loose mill-scale, loose rust and foreign matters.</td>
<td>St 2</td>
<td>St 2</td>
</tr>
</tbody>
</table>
PAINT MATERIALS

01. **PRIMER PAINTS (P)**

Prime paint products shall be applied only on dry and clean surfaces.

01.01 **Primer Paint – P1 (Phenolic – Alkyd Based)**

A single pack air drying phenolic modified alkyd composition with zinc phosphate as a primer paint conforming generally to IS : 2074.

- **Air drying time**
 - About 60 minutes (touch dry)
 - Overnight (hard dry)

- **Dry film thickness (DFT)/ Coat**
 - 40 microns (min)

- **Temperature resistance**
 - Upto 100°C dry heat

01.02 **Primer Paint – P2 (Chlororubber Based)**

A single pack air drying high build chlorinated rubber based zinc phosphate primer.

- **Percent chlororubber**
 - 20 to 22 (% Chlorine above 65% in Chlororubber)

- **Air drying time**
 - About 15 minutes (touch dry)
 - Overnight (hard dry)

- **DFT/ Coat**
 - 50 microns (min)

- **Temperature resistance**
 - Up to 65°C dry heat

01.03 **Primer Paint – P3 (PVC Copolymer Alkyd Based)**

Polyvinyl chloride (PVC) - Alkyd zinc phosphate – redoxide Based primer

- **Ratio**
 - PVC copolymer + alkyd reisn (1.1)

- **Pigments**
 - Zinc phosphate & Fillers

- **Air drying time**
 - 24 hours

- **DFT/Coat**
 - 80 microns

- **Temperature**
 - Upto 80°C dry heat

01.04 **Primer Paint – P4 (Epoxy Based)**
A two pack air drying Epoxy polyamide resin based red oxide – zinc phosphate primer.

Epoxy content (% wt.) - 15 to 18

Air drying time - About 30 minutes (touch dry) - overnight (hard dry)

DFT/Coat - 30 microns (min)

Temperature resistance - Upto 120°C dry heat

01.05 Primer Paint – P5 (Epoxy Based)

A two pack air drying Epoxy polyamide with zinc dust of at least 92% zinc dust on the dry film

Epoxy content (% wt.) - 8 to 10

Air drying time - Less than 10 minutes (touch dry) - Less than 2 hours (hard dry)

DFT/Coat - 40 microns (min)

Temperature - Upto 300°C dry heat

01.06 Primer Paint – P6 (Poly – Vinyl Butyral Resin Based)

A two pack air drying polyvinyl butyral resin based wash primer with rust inhibitive pigments.

Air drying time - 5 to 7 minutes (touch dry) - 2 hours (hard dry)

DFT/Coat - 8 microns

Temperature resistance - Upto 65°C dry heat

Application for - Galvanised iron, aluminium, light alloys etc. on which the adhesion of conventional paints are poor.

01.07 Primer Paint – P7 (Ethyl Zinc Silicate, EZS Based)

A two pack heavy duty zinc dust rich silicate primer which protects the surface with just a single coat.

Total solids (3 wt) - 84 +/- 2

Density (g / cc) - 3.07 +/- 0.05

Air drying time - To top coat 16 hours

DFT / Coat - 60 microns

Temperature resistance - Upto 450 deg C dry heat
01.08 **Primer Paint – P8 (high Build Coal Tar Epoxy)**

A two pack cold cured H. B. epoxy coal tar coating – no primer is required.

Mixing ratio - Base: Hardener (4:1 by vol.)
Air drying time - 48 hours (hard dry)
DFT / Coat - 100 microns

01.09 **Wood Varnish – P9**

Treated oil based primer pigmented with suitable pigments:

Air drying time - 16 hours for application of top coat.
Coverage - 10 to 14 sq. m/litre

02. **INTERMEDIATE PAINTS (I)**

These paints shall be applied over primer coats as an intermediate layer to provide weather proof seal of primer coats.

02.01 **Intermediate Paint-II (Phenolic alkyd based)**

A single pack high build phenolic based paint with micaceous iron oxide (M 10).

Air Drying Time - 4 to 6 hours (touch dry)
2 days (hard dry)
DFT / Coat - 75 microns (min)
Temperature resistance - Upto 100 deg C dry heat
Compatible with - Primer P1

02.02 **Intermediate Paint -12 (Chlororubber based)**

A single pack air drying high build chloro based paint with MIO.

Air Drying Time - 15 minutes (touch dry)
- 24 hours (hard dry)
DFT/Coat - 70 microns (min)
Temperature resistance - Upto 65 deg C dry heat
Compatible with - Primer P2, P3 & P4

02.03 **Intermediate Paint -13 (PVC – Alkyd Based)**

PVC Coploymer - Resin 1 : 1
Pigments - Micaceous iron oxide (MIO)
DFT/Coat - 80 microns
Temperature resistance - Upto 80 deg C dry heat
Compatible with - Primer P2 & P3

02.04 **Intermediate Paint -14**
A two pack air drying high build epoxy resin based paint with MIO.

Air drying time - 6 to 8 hours (touch dry)
- 7 days (full cure)
DFT / Coat - 100 microns
Temperature - Up to 180°C dry heat
Compatible with - Primer P4 & P5

03. **FINISH PAINTS (F)**

Finish paint costs shall be applied over primer coats and intermediate coats after proper cleaning and touch up of primed surface.

03.01 **Finish Paint – F1**

A single pack air drying high gloss phenolic alkyd modified synthetic enamel paint suitably pigmented.

Air drying time - 3 to 4 hours (touch dry)
- 24 hours (hard dry)
DFT/Coat - 25 microns (min)
Temperature - Upto 100°C dry heat
Compatible with - Primer P1
Intermediate I1
Colour - Generally all shades

03.02 **Finish Paint – F2**

A single pack air drying polyurethane enamel of high gloss and hard finish suitably pigmented.

Air drying time - 2 to 2 ½ hours (touch dry)
- 6 hours (hard dry)
DFT/Coat - 30 microns (min)
Temperature resistance - Upto 100°C dry heat
Compatible with - Primer P1 & P8 and
Intermediate I1
Colour - Generally all shades

03.03 **Finish Paint – F3**

A two pack air drying bituminous aluminum paint.

Air drying time - 1 to 2 hours (touch dry)
- 21 hours (hard dry)
03.04 **Finish Paint – F4**

A ready mixed oil –alkyd based synthetic enamel paint of high gloss and hard wearing properties.

- **DFT/Coat**: 25 microns (min)
- **Temperature resistance**: Upto 100°C dry heat
- **Compatible with**: Primer P1 and Intermediate I1
- **Colour**: Bright metallic

- **Air drying time**: 6 to 8 hours
- **Coverage**: 14 to 16 Sq. m/litre
- **Temperature resistance**: Upto 60°C dry heat
- **Compatible with**: P8
- **Colour**: Generally all shades

03.05 **Finish Paint – F5**

A single pack air drying plasticized chlororubber paint suitably pigmented.

- **DFT/Coat**: 35 microns (min)
- **Temperature resistance**: Primer 65°C dry heat
- **Compatible with**: Primer P2 & P3, Intermediate I2 & I3
- **Colour**: Nearly all shades except few.

- **Air drying time**: 30 minutes (touch dry)
- **Coverage**: 14 to 16 Sq. m/litre
- **Temperature resistance**: Upto 60°C dry heat
- **Compatible with**: Primer P2 & P3, Intermediate I2 & I3
- **Colour**: Nearly all shades except few.

03.06 **Finish Paint – F6**

A PVC - Copolymer alkyd based enamel.

- **Density**: 1.17 ± 0.05
- **Total solids (1 wt)**: 55 ± 2
- **DFT/Coat**: 40 microns
- **Compatible with**: P2 and P3

03.07 **Finish Paint – F7**
A two pack air drying epoxy polyamide enamel suitably pigmented.

Air drying time - 2 to 3 hours (touch dry)
- 7 days (full cure)

DFT/Coat - 40 microns (min)

Temperature resistance - Up to 130°C dry heat

Compatible with - Primer P4 & P5,
Intermediate 14

Colour - Generally all shades.

03.08 **Finish Paint – F8**

A single pack synthetic rubber based aluminum paint.

Air drying time - 2 hours (touch dry)
- 24 hours (hard dry)

DFT/Coat - 25 microns (min)

Temperature resistance - Upto 200°C dry heat

Compatible with - No Primer paint except primer P6 is applicable in case of non-ferrous substrate.

Colour - Smooth aluminium.
PAINTING SCHEME

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description</th>
<th>Painting Scheme At Shop</th>
<th>Painting Scheme At Site</th>
<th>Total DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Steel Structures (Temp. not exceeding 80°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Technological steel structures for plant and equipment</td>
<td>SP – Sa 2.5 2P1</td>
<td>CRT 2F1</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Indoor</td>
<td>SP – Sa 2.5 2P1</td>
<td>CRT 2F1</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Outdoor</td>
<td>SP – Sa 2.5 2P1</td>
<td>CRT 2F1</td>
<td>205</td>
</tr>
<tr>
<td>1.2</td>
<td>Fabricated steel structures at site for rung ladders, cat-ladders, gates, rolling shutters, etc. (Springs/rubbing surfaces excluded)</td>
<td>SP – St-2 and / Or St-3 2P1</td>
<td>CRT 2F1</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>- Indoor / Outdoor</td>
<td>SP – St-2 and / Or St-3 2P1</td>
<td>CRT 2F1</td>
<td>130</td>
</tr>
<tr>
<td>1.3</td>
<td>Walkways, stairs, platforms etc. which are of wearing surface</td>
<td>SP – St -2 and / or St -3 2P1</td>
<td>CRT 2F1</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>- Indoor</td>
<td>SP – St -2 and / or St -3 2P1</td>
<td>CRT 2F1</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>- Outdoor</td>
<td>SP-St2 and / Or St -3 2P1</td>
<td>CRT 2F1</td>
<td>205</td>
</tr>
<tr>
<td>1.4</td>
<td>Steel doors and windows</td>
<td>SP- St-2 and / or St-3 2P1</td>
<td>CRT 2F2</td>
<td>215</td>
</tr>
</tbody>
</table>
Painting Scheme

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description</th>
<th>Painting Scheme</th>
<th>Total DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>At Shop</td>
<td>At Site</td>
</tr>
<tr>
<td>2.0</td>
<td>MECHANICAL EQUIPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Mechanical equipment (Temp. not exceeding 80°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1.1 Static equipment like storage tanks, vessels, bins, bunkers, heat exchangers, coolers, Cyclones, scrubbers, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Indoor</td>
<td>SP – Sa 2.5</td>
<td>CRT 2F5/2F6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2P2/2P3</td>
<td>CRT 2F5/2F6</td>
</tr>
<tr>
<td></td>
<td>- Outdoor</td>
<td>SP – Sa 2.5</td>
<td>CRT 2F6/2F7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2P2/2P3 + 1/2 / 1/3</td>
<td>CRT 2F6/2F7</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Rotary/moving equipment and machineries like crushers, mills, vibratory screens, bin activators, blowers, fan, air/gas compressors, pumps, gear boxes, machine housings etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Indoor</td>
<td>SP – Sa 2.5</td>
<td>CRT 2F6/2F7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2P3/2P4</td>
<td>CRT 2F6/2F7</td>
</tr>
<tr>
<td></td>
<td>- Outdoor</td>
<td>SP – Sa 2.5</td>
<td>CRT 2F6/2F7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2P3 + 1/3 / 1/4</td>
<td>CRT 2F6/2F7</td>
</tr>
<tr>
<td>3.0</td>
<td>Pipe / Duct work (Overground)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Non – insulated (temperature up to 80°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Indoor</td>
<td>SP – St2 and or St3</td>
<td>CRT 2F1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2P1</td>
<td>CRT 2F1</td>
</tr>
<tr>
<td></td>
<td>- Outdoor</td>
<td>SP – St2 and/or St3</td>
<td>CRT 2F1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2P1 + 111</td>
<td>CRT 2F1</td>
</tr>
<tr>
<td>3.2</td>
<td>Insulated (hot)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Indoor / Outdoor</td>
<td>SP – St2 and/or St3</td>
<td>Remove paint and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.0 Oxygen Plant

<table>
<thead>
<tr>
<th>4.1 Outdoor steel structures</th>
<th>SP – St2 and / or St3 2P1 + 1I1</th>
<th>CRT 2F3</th>
<th>205</th>
</tr>
</thead>
</table>

| 4.2 Rotary equipment like air compressors | Sa 2.5 2P4 | CRT 2F7 | 140 |

5.0 Others

<table>
<thead>
<tr>
<th>5.1 Standard mobile equipment like chasis of trucks, dumpers, crawler cranes bulldozers, Railway rakes, chasis of slag cars, ladle cars, etc.</th>
<th>As per manufacturer’s standards</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5.2 Laboratory equipment like ovens, screens, magnetic stirrers, samplers, etc.</th>
<th>Stove enamelling CRT 110</th>
</tr>
</thead>
</table>

| 5.3 Steel structures partly immersed in water | SP – Sa 2.5 2P8 | CRT 200 |

Notes:-

1. Painting scheme of all fabricated steel structures, fabricated pipe work, building structures, conveyor galleries, pipe trestles etc. is indicated in the Technical Specification of steel structures.

2. **Primer Paint**

 Primer coat shall be suitable for intended temperature applications as per manufacturer’s recommendation. The primer selection shall be generally in line with the specification laid down in Annexure -02.

3. **Finish Paint**

 In case of Aluminiums cladding final painting will not be required.

6.0 LIST OF APPROVED MAKES

Approved makes for HT Cables to be supplied shall be as per NIT.
TENDER DOCUMENT

NIT No.- DLI / C&E / WI-665 / 511

Tender for ‘Supply’ of 3CX185 mm², 11KV(UE) GRADE, POWER CABLE for the project of “Augmentation of Raw Material Receipt and Handling Facilities with new OHP Part– B (Package- 061) of Bhilai Steel Plant (SAIL)”.

VOLUME- 2B

(Scope of Work & General Technical Specification)

ENGINEERING PROJECTS (INDIA) LIMITED
(A GOVT. OF INDIA ENTERPRISE)
Core-3, Scope Complex, 7, Institutional Area,
Lodhi Road, New Delhi-110003
TEL NO: 011-24361666 FAX NO. 011- 24363426
Scope of Work – 3CX185 mm², 11KV(UE) Grade, power cable

Scope of work of bidder for 3CX185 mm², 11KV(UE) Grade, power cable shall include (but not limited to) Supply, testing and inspection at works, packing, dispatch, transportation, delivery at site getting approval of drawings & documents from BSP/MECON/EPI before manufacturing as specified in technical specification, providing drawings & documents, datasheets in requisite sets, quality assurance plan, internal test reports and handing over to Bhilai Steel Plant.

The scope of supply of the bidder shall be deemed to include all such items which although are not specifically mentioned in the specification, but are needed to make the equipment/system complete in all respect for its safe, reliable, efficient and trouble free operation.

Any modifications/deletions/additions/alteration in design/drawings/documents as required by BSP/MECON/EPI shall be in the scope of bidder.
GENERAL TECHNICAL SPECIFICATION
FOR
HT CABLE

1.00 General

1.01. Standards

The design, manufacture, assembly and testing as well as performance (including safety, earthing and other essential provisions) of equipment and accessories covered under this specification shall, in general, comply with the latest issue of:

Latest applicable Standards and Codes of Practices published by Indian Standards Institution (BIS).
Latest IPSS (Interplant Standards for Steel Industry)
Latest Indian Electricity Rules & statutory requirements of Central Govt. and State Govt.

In case, the tenderer is not in a position to comply fully with certain IS / IPSS specifications or in respect of certain items for which there are no IS / IPSS specifications, the tenderer may base his proposals on IEC recommendations or other reputed national or international standards subject to the approval of the Purchaser.

The components and materials used and the equipment supplied shall conform to high standards of design, engineering and workmanship and shall be suitable for efficient operation and reliable service in steel plant conditions.

All equipments supplied and all work done including system design and detailed engineering shall also comply with the statutory requirements of Govt. of India and the respective governments of state in which the plant is situated. The installation shall also confirm to Indian Electricity Act and Indian Electricity Rules.

In case of any contradiction between the data given in the Technical Specification (TS) and this General Technical specification (GTS), data
given in the Technical specification (TS) shall prevail.

1. 02 Climatic Conditions

1.02.01 Environmental condition

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Environmental condition</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Maximum ambient temp.</td>
<td>50 deg. C</td>
</tr>
<tr>
<td>2.0</td>
<td>Maximum Humidity</td>
<td>100 % does not occur simultaneously with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maximum temperature.</td>
</tr>
<tr>
<td>3.0</td>
<td>Height</td>
<td>Less than 1000 M.</td>
</tr>
<tr>
<td>4.0</td>
<td>Environment</td>
<td>Dusty & Corrosive</td>
</tr>
</tbody>
</table>

1.02.02 Ambient conditions of shop units

Generally following maximum ambient temperature shall be considered in different units of the integrated steel plant.

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Area</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Coke Ovens & Byproduct Plant</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Battery cellar</td>
<td>+ 55 Deg. C</td>
</tr>
<tr>
<td>2.</td>
<td>Battery Top</td>
<td>+ 60 Deg. C</td>
</tr>
<tr>
<td>3.</td>
<td>Coal Tower, Intermediate & End benches</td>
<td>+ 50 Deg. C</td>
</tr>
<tr>
<td>4.</td>
<td>Pusher Car & Loco</td>
<td>+ 50 Deg. C</td>
</tr>
<tr>
<td>5.</td>
<td>Guide Car & Charging Car</td>
<td>+ 60 Deg. C</td>
</tr>
<tr>
<td>B.</td>
<td>Blast furnace</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Cast house</td>
<td>+ 60 Deg. C</td>
</tr>
<tr>
<td>2.</td>
<td>Furnace proper</td>
<td>+ 55 Deg. C</td>
</tr>
<tr>
<td>3.</td>
<td>Stock house</td>
<td>+ 50 Deg. C</td>
</tr>
<tr>
<td>4.</td>
<td>Pump house</td>
<td>+ 50 Deg. C</td>
</tr>
<tr>
<td>5.</td>
<td>Stove area</td>
<td>+ 55 Deg. C</td>
</tr>
<tr>
<td>6.</td>
<td>GCP area</td>
<td>+ 50 Deg. C</td>
</tr>
<tr>
<td>7.</td>
<td>Other areas</td>
<td>+ 50 Deg. C</td>
</tr>
<tr>
<td>C.</td>
<td>Steel Melting Shop</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Converter Bay</td>
<td>+ 60 Deg. C</td>
</tr>
<tr>
<td>2.</td>
<td>Mixer Bay</td>
<td>+ 55 Deg. C</td>
</tr>
<tr>
<td>3.</td>
<td>Other areas</td>
<td>+ 55 Deg. C</td>
</tr>
<tr>
<td>D.</td>
<td>Continuous Casting Shop</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Casting Bay</td>
<td>+ 60 Deg. C</td>
</tr>
<tr>
<td>2.</td>
<td>Withdrawal, straightening and gas cutting areas</td>
<td>+ 55 Deg. C</td>
</tr>
<tr>
<td>3.</td>
<td>Other areas</td>
<td>+ 50 Deg. C</td>
</tr>
<tr>
<td>E.</td>
<td>Hot rolling mills</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Generally</td>
<td>+ 55 Deg. C</td>
</tr>
<tr>
<td>2.</td>
<td>Finishing bays</td>
<td>+ 50 Deg. C</td>
</tr>
<tr>
<td>3.</td>
<td>Foundry</td>
<td>+ 55 Deg. C</td>
</tr>
<tr>
<td>4.</td>
<td>Auxiliary Shops</td>
<td>+ 50 Deg. C</td>
</tr>
<tr>
<td>F.</td>
<td>Other areas</td>
<td>+ 50 Deg. C</td>
</tr>
<tr>
<td>G.</td>
<td>Electrical rooms</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HT/LT substation & MCC rooms (ventilated)</td>
<td>+ 45 Deg. C</td>
</tr>
<tr>
<td>2.</td>
<td>Cable basements / tunnels (ventilated)</td>
<td>+ 45 Deg. C</td>
</tr>
<tr>
<td>H.</td>
<td>Control Rooms</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Control rooms – Air conditioned</td>
<td>+ 24 Deg. C</td>
</tr>
</tbody>
</table>
Equipment selection and de-rating shall generally be based on ambient temperature of 50 Deg.C. For specific areas and shops, the ambient temperature conditions indicated above shall be taken into consideration and equipment shall be suitably de-rated accordingly.

The equipment offered should be suitable for smooth, efficient and trouble free service in the tropical humid climate prevailing at plant site and under the ambient temperature conditions indicated above for the different shops and areas. In hot areas of higher temperature conditions, the equipment shall be adequately protected against damage from radiant heat and hot air.

The equipment shall be designed to give efficient and reliable performance under heavy steel plant conditions and shall be such that the risks of accidental short-circuits due to animals, birds or vermins are avoided.

1.03 Standard Voltage levels:

In case the standard voltage levels to be adopted in the plant are specified in the Technical specification, it shall be followed. In absence of any details indicated in the Technical Specification, the following standard voltage levels shall be adopted.

<table>
<thead>
<tr>
<th>Si.No</th>
<th>Description</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HT AC</td>
<td>11 KV / 6.6 KV , 3 phase, 50 Hz, unearthed neutral</td>
</tr>
<tr>
<td>2.</td>
<td>LT AC</td>
<td>415V, 3 Phase, 50 Hz, 4 wire, solidly earthed</td>
</tr>
<tr>
<td>3.</td>
<td>AC control and signaling voltage</td>
<td>240V, AC + 10% obtained using suitable control transformers with auto changeover facility.</td>
</tr>
<tr>
<td>4.</td>
<td>DC supply voltage</td>
<td>220 Volts / 110 Volts</td>
</tr>
<tr>
<td>5.</td>
<td>DC control and signaling voltage</td>
<td>220 Volts / 110 Volts</td>
</tr>
<tr>
<td>6.</td>
<td>Control voltage for HT switchgear equipment</td>
<td>110 V DC from battery in HT S/S area. 220 V DC from battery in MSDS area.</td>
</tr>
<tr>
<td>7.</td>
<td>Special socket outlets for portable lamps</td>
<td>24V, single phase, 50 Hz, AC obtained through suitable transformers</td>
</tr>
<tr>
<td>8.</td>
<td>DC Electro-magnetic brakes</td>
<td>220V, DC, obtained through individual rectifiers</td>
</tr>
<tr>
<td>9.</td>
<td>Solenoid valves</td>
<td>24V DC, unearthed</td>
</tr>
<tr>
<td>10.</td>
<td>Machine tools lighting</td>
<td>24 V AC</td>
</tr>
<tr>
<td>11.</td>
<td>Sockets for Welding purposes</td>
<td>415V, 100A, 3 pin plus earth with plug interlocked switch</td>
</tr>
<tr>
<td>12.</td>
<td>Sockets for hand tools</td>
<td>240V, 15A, 2 pin plus earth with plug interlocked switch</td>
</tr>
<tr>
<td>13.</td>
<td>Illumination system</td>
<td>240 V AC for general application. 24 V AC for confined & semi confined area. (as per IPSS).</td>
</tr>
<tr>
<td>14.</td>
<td>PLC power supply</td>
<td>240 V AC, 50 Hz, obtained through UPS (for processor, RIO chassis,</td>
</tr>
</tbody>
</table>
Monitoring and Signaling in Electronic Installations, Mimic Panels

<table>
<thead>
<tr>
<th>Description</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring and Signaling in electronic installations, mimic panels</td>
<td>24V, DC (Through PLC output for PLC control boards / desks)</td>
</tr>
<tr>
<td>PLC DI interrogation voltage</td>
<td>24V DC</td>
</tr>
<tr>
<td>PLC DO voltage</td>
<td>24V DC</td>
</tr>
</tbody>
</table>

1.04 Symmetrical short circuit ratings:

The three phase symmetrical short-circuit ratings of the switchgear at the different voltage levels shall be as follows unless specifically indicated in the Technical specification:

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Description</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11 kV switchgear</td>
<td>40 kA for 3 sec.</td>
</tr>
<tr>
<td>2</td>
<td>6.6 kV switchgear</td>
<td>40 kA for 3 sec.</td>
</tr>
<tr>
<td>3</td>
<td>415 V switchgear</td>
<td>50 kA for 1 sec.</td>
</tr>
</tbody>
</table>

1.05 Permissible variations:

The system / unit / plant / equipment shall be designed so as to be suitable for the following variations in voltage and frequency unless specifically indicated in the Technical specification:

<table>
<thead>
<tr>
<th>Description</th>
<th>Voltage</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible variations with rated performance, rated current and control effectiveness maintained</td>
<td>For LT system :+10% & -15% For HT system :+6% & -9%</td>
<td>Frequency variation for both HT & LT shall be + 4%, -6%</td>
</tr>
<tr>
<td>Permissible variations With changes in rated Current / torque but without any undesirable effect on performance</td>
<td>+/-10%</td>
<td>+/-3%</td>
</tr>
<tr>
<td>Permissible variations for control and regulation equipment</td>
<td>+/-15%</td>
<td>+6%, -6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Voltage</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>with rated performance and control quality maintained</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permissible voltage dip at the HT and LT switch gear bus during starting of HT and LT motor</td>
<td>For LT system :-15% For HT system :-10%</td>
<td>Frequency Variation for both HT & LT shall be considered as +4%, -6%.</td>
</tr>
</tbody>
</table>
2.00 11 KV (UE) XLPE cables Technical Parameter

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Voltage Grade</td>
<td>11 kV (UE)</td>
</tr>
<tr>
<td>2.0</td>
<td>Duty type</td>
<td>Heavy duty</td>
</tr>
<tr>
<td>3.0</td>
<td>No. of cores</td>
<td>3 cores</td>
</tr>
<tr>
<td>5.0</td>
<td>Conductor type</td>
<td>Compact circular stranded (rm/V) aluminum conductor, with conductor screening of extruded semi conducting material . Conductor construction class-2 as per IS 8130-1984.</td>
</tr>
<tr>
<td>6.0</td>
<td>Insulation type</td>
<td>XLPE insulated and insulation provided with shielding of extruded semi conducting compound over individual core followed by lapped semi conducting material and copper tape (non magnetic) metallic screen , cores stranded together with a holding tape provided with a common covering of extruded inner sheath of type ST2 compound . Thickness of the insulation shall be 5.5 mm for size 3x185 sq.mm as per table-2 IS 7098 (part-II) 1985.</td>
</tr>
<tr>
<td>7.0</td>
<td>Armour</td>
<td>Galvanized steel wire armoured . For multi core cables , armouring shall be applied over the inner sheath by flat steel wires strips(formed wire). Round steel wire armouring can also be offered. For single core armoured cables non-magnetic armour consisting of hard drawn flat or round aluminium wires shall be provided.</td>
</tr>
<tr>
<td>8.0</td>
<td>Outer sheath</td>
<td>Overall PVC outer sheath of type ST-2 compound as per IS 5831/1984. Outer sheath should be applied with extrusion only cables to be ISI marked. Thickness of the outer sheath shall not be less than 3.6 mm for size 3x185 sq.mm as per table -5 of IS:7098)part-II)/1985 & IS:10462 (part-I)/1983). The sheath shall be black in colour . Suitable chemicals shall be added into the PVC compound of the outer sheath to protect the cable against rodent and termite attack.</td>
</tr>
<tr>
<td>9.0</td>
<td>Miscellaneous</td>
<td>Copper screen shall be suitable to carry 1 KA E/F current for one second.</td>
</tr>
<tr>
<td>10.0</td>
<td>Temp. rise on continuous load</td>
<td>90 deg.C</td>
</tr>
<tr>
<td>11.0</td>
<td>Oxygen index of outer sheath material for XLPE Cable</td>
<td>Shall not be less than 29 at 27 ± 2 deg. C.</td>
</tr>
<tr>
<td>12.0</td>
<td>Temperature index</td>
<td>Not below 250°C.</td>
</tr>
<tr>
<td>13.0</td>
<td>Max. conductor withstand temperature during short circuit.</td>
<td>250°C</td>
</tr>
</tbody>
</table>

Note: All HT Cables will be of XLPE insulated, FRLS sheathed.